Concours UE4 2016/2017 UE4 - Q6
+2
L'Homme Vert
V.Dsw
6 participants
Tutorat Licence Santé Lille Catho :: L1 - Statistiques :: Questions à propos des colles :: 2016-2017
Page 1 sur 1
Concours UE4 2016/2017 UE4 - Q6
Bonjour,
L'énoncé de la question qui me pose problème est le suivant :
La durée de la gestation chez la femme ( comptée depuis le premier jour des dernières règles) vaut en moyenne 280 jours (40 semaines). Les enfants sont dits prématurés en dessous de 259 jours. Dans la région on observe environ 6,3 % de prématurés
Pour ces 1000 naissances, quel est l'intervalle autour de 6,3% qui permet d'estimer ce paramètre avec une précision de 99% ?
a) 1,3 à 10,3 %
b) 4 à 6%
c) Je ne peux pas le définir car l'effectif n'est pas suffisant
d) 6,3 +/-1,8%
e) 5,3 à 7,3%
Si j'applique la formule [p-e ; p+e] sachant que dans mon cours il est dit que la précision correspond à l'écart j'obtiens :
[0,063-0,99 ; 0,063 + 0,99 ] = [-0,927 ; 1,053] soit aucune réponse possible
Mais si je prend comme valeur de l'écart 1-e = 0,1% j'obtiens la réponse E
Du coup je ne sais pas trop quoi penser de ce résultat, je ne comprend pas ou est mon erreur pourriez vous me l'indiquer ?
Merci d'avance
L'énoncé de la question qui me pose problème est le suivant :
La durée de la gestation chez la femme ( comptée depuis le premier jour des dernières règles) vaut en moyenne 280 jours (40 semaines). Les enfants sont dits prématurés en dessous de 259 jours. Dans la région on observe environ 6,3 % de prématurés
Pour ces 1000 naissances, quel est l'intervalle autour de 6,3% qui permet d'estimer ce paramètre avec une précision de 99% ?
a) 1,3 à 10,3 %
b) 4 à 6%
c) Je ne peux pas le définir car l'effectif n'est pas suffisant
d) 6,3 +/-1,8%
e) 5,3 à 7,3%
Si j'applique la formule [p-e ; p+e] sachant que dans mon cours il est dit que la précision correspond à l'écart j'obtiens :
[0,063-0,99 ; 0,063 + 0,99 ] = [-0,927 ; 1,053] soit aucune réponse possible
Mais si je prend comme valeur de l'écart 1-e = 0,1% j'obtiens la réponse E
Du coup je ne sais pas trop quoi penser de ce résultat, je ne comprend pas ou est mon erreur pourriez vous me l'indiquer ?
Merci d'avance
V.Dsw- Messages : 91
Date d'inscription : 10/09/2016
Re: Concours UE4 2016/2017 UE4 - Q6
Salut!
Alors le piège ici est dans l'interprétation de la question. "L'intervalle autour de 6.3% qui permet d'estimer ce paramètre avec une précision de 99%", ca signifie qu'on te demande l'intervalle de confiance autour de p telle qu'on ait 99% de chance que la proportion dans l'échantillon soit dans l'intervalle.
Donc un intervalle de confiance à 99% avec alpha=1%, donc epsilon=2.576 et tu utilises la formule p +- epsilon × écart type
Normalement on trouve la réponse D
C'est plus clair ?
Alors le piège ici est dans l'interprétation de la question. "L'intervalle autour de 6.3% qui permet d'estimer ce paramètre avec une précision de 99%", ca signifie qu'on te demande l'intervalle de confiance autour de p telle qu'on ait 99% de chance que la proportion dans l'échantillon soit dans l'intervalle.
Donc un intervalle de confiance à 99% avec alpha=1%, donc epsilon=2.576 et tu utilises la formule p +- epsilon × écart type
Normalement on trouve la réponse D
C'est plus clair ?
L'Homme Vert- Messages : 7
Date d'inscription : 23/11/2016
Concours 2016/2017 QCM 6
Oui merci beaucoup, j'avais pas dutout vu cette subtilité !
V.Dsw- Messages : 91
Date d'inscription : 10/09/2016
Re: Concours UE4 2016/2017 UE4 - Q6
Salut
J'avais aussi trouvé la réponse D
Mais lorsqu'on addition et soustrait on obtient l'intervalle (4,5 à 8,1)
Cependant, je pensais qu'on ne pouvait pas avoir une borne < 5
Peux tu m'éclairer
Merci d'avance
J'avais aussi trouvé la réponse D
Mais lorsqu'on addition et soustrait on obtient l'intervalle (4,5 à 8,1)
Cependant, je pensais qu'on ne pouvait pas avoir une borne < 5
Peux tu m'éclairer
Merci d'avance
Emeline19- Messages : 23
Date d'inscription : 09/11/2016
Re: Concours UE4 2016/2017 UE4 - Q6
Salut Emeline !
Ce ne sont pas les bornes qui doivent être ≥ 5, mais l'effectif multiplié par les bornes : n*p ≥ 5 et n*(1-p) ≥ 5.
Par exemple ici où n = 1000 :
- 0,045*1000 = 45 > 5
- (1 - 0,045)*1000 = 0,955*1000 = 955 > 5
- 0,081*1000 = 81 > 5
- (1 - 0,081)*1000 = 0,919*1000 = 919 > 5
Donc toutes les CA sont vérifiées
Ce ne sont pas les bornes qui doivent être ≥ 5, mais l'effectif multiplié par les bornes : n*p ≥ 5 et n*(1-p) ≥ 5.
Par exemple ici où n = 1000 :
- 0,045*1000 = 45 > 5
- (1 - 0,045)*1000 = 0,955*1000 = 955 > 5
- 0,081*1000 = 81 > 5
- (1 - 0,081)*1000 = 0,919*1000 = 919 > 5
Donc toutes les CA sont vérifiées
Kaoline- Messages : 252
Date d'inscription : 14/01/2016
Age : 27
Re: Concours UE4 2016/2017 UE4 - Q6
Salut !
En faisant e = epsilon X écart type, je ne trouve pas la bonne réponse.
J'utilise bien 2,57 pour epsilon et 0,077 pour mon écart type et impossible de trouver la bonne réponse
Pouvez-vous m'éclairer svp ?
Merci de votre réponse
En faisant e = epsilon X écart type, je ne trouve pas la bonne réponse.
J'utilise bien 2,57 pour epsilon et 0,077 pour mon écart type et impossible de trouver la bonne réponse
Pouvez-vous m'éclairer svp ?
Merci de votre réponse
poissond'eausalée- Messages : 170
Date d'inscription : 24/11/2018
Re: Concours UE4 2016/2017 UE4 - Q6
Salut !
Le calcul que tu utilises est juste mais la valeur numérique de ton écart-type possède une erreur
En rappel, l'écart-type d'une pourcentage se calcule de la manière suivante : s = racine ((pen valeur décimale)*(1-p))/N)
Attention à ne pas faire d'erreur lors de la conversion de ton pourcentage en valeur décimale : ici 6,3% = 0,0063
Lors de l'application numérique pour le calcul de ton écart-type, tu trouves donc 0,0077 (et non 0,077).
J'espère que cela a pu t'éclairer
Bon courage !!
Le calcul que tu utilises est juste mais la valeur numérique de ton écart-type possède une erreur
En rappel, l'écart-type d'une pourcentage se calcule de la manière suivante : s = racine ((pen valeur décimale)*(1-p))/N)
Attention à ne pas faire d'erreur lors de la conversion de ton pourcentage en valeur décimale : ici 6,3% = 0,0063
Lors de l'application numérique pour le calcul de ton écart-type, tu trouves donc 0,0077 (et non 0,077).
J'espère que cela a pu t'éclairer
Bon courage !!
Vault- Messages : 132
Date d'inscription : 20/09/2018
Tutorat Licence Santé Lille Catho :: L1 - Statistiques :: Questions à propos des colles :: 2016-2017
Page 1 sur 1
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum